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The symbolic method of Lur’e [l] and the principle of minimum potential energy are 

used in our derivation of the differential equilibrium equations of a plate of variable 
thickness and of boundary conditions. Rectangular plates and axially symmetrical circu- 

lar plates are considered. The equilibrium equations and boundary conditions were derived 
(in Cartesian coordinates) in [‘L, 31 for a plate of uniform thickness. 

1, Derivation of the equilibrium equotionc of the plate in Car- 
terion coordinates. Let ILL, u,,, w,, be the displacements of the points of an ori- 
ginal plane z = U. and u”‘, vo’, w,,’ be the values of the derivatives of displacements 
along coordmate z in this plane; we have then p] 
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The variation of the specific potential energy of the plate deformation is 

6n = cs&e, + Qe, + a&, + r&r, + @YYZ + %6Ytx (1.3) 

Let us express the variations of deformations in terms of variations of the basic varia- 

bles uo, tlo, luo, uo’; uO’, ws’, making use of the relations between displacements and 

deformations and of equations (1.1). We have, for instance, 

6e, = calbua - - mz# 6% +sa18u( _ mh.al” 
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Expressions for other variations of deformations will not be given here ; they can be 
found in [S] (formulas (1.2) and (2.1)). 

To obtain the potential energy of the plate deformation, the specific potential energy 

must be integrated over the plate volume, i.e. over its thickness and the area of its base 
in plan projection. Let us first integrate over the thickness ; let the top and bottom sur- 
faces of the plate be given by equations z = h,(s, y) and z = /L&Z, y). We obtain the fol- 
lowing expressions : 
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We have introduced here static (T!$‘, d$,...l and hyperstatic (Tf:), Tfxz)..., Gg), GA’),...) 

stress characteristics, conforming to the formulas (1.3). (1.4), (2.2) and (2.3) in [Sl; 
the values $“, Xl”‘, P, $P’ @‘, cp@l) are also introduced (see formulas (1.6) and 
(2.5) of ~33). Let us note that 

x(O) = 110, +o) = vo, @O’= wO, I@ = UO’, I@ = ug), q(O) == w; t, (1.6) z 
Let us add up all the integrals of type (1.5) and then integrate the obtained expression 

over the area of the plate base in plan projection 52. Some of the double integrals over 
the area 51 will then change into integrals along contour L embracing area C.?: in this 

manner 

6l.I =I i {$ [(n.@ + n,P)) S$,“’ + (n,S(~) + n&j) 6$ + (“s@ + %&“)J 8P) + 

n=o (i, 
+ (n,&) + n,~@)) 61&?+ (n,~(~) + n,c;‘)) &#“y”” + (n,I$? -!- n,T(,n)) 6~(“)1 ds - 

Let us calculate the elementary work 6~~ of external forces applied to the faces of 
the plate. We shall denote the vectors of external forces applied to unit areas of the top 

and bottom surfaces of the plate as P, and P, . We have 

6Al = s\ pl’6u~dsz1+ \\ pl’su&? (1.8) 
$1, (ii:, 

Here a1 and C& are the surface areas of the top and bottom bases of the plate, and u1 , 
u2 are the displacement vectors of the points on these surfaces. Further, 

dQ1= dx cly ClQz = 
dx dy 
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where (z, ni) is the anglebetween the z-axis and the external normal to the Surface 

z = ~&zJ) (6 = 1,2), Since 

’ cos (-7 %) ’ = j/f, + (&,J% + (a?:,,, = 
1 
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and allowing for relations (1. Q),(l. 10) we can rewrite integrals (1.3) as follows: 
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Making use of formulas (1.1). we express now the displacement variations of the points 
on the plate faces in terms of variations of basic variables u~,v~,..., u;,,‘and their deriva- 
tives. Making use also of the formulas which determine the values of x’,“) ,..., cpp), we 
can transform the elementary work done by the face forces (1.11) as follows: 

Let us now calculate the elementary work of external forces applied to the cylindrical 

side surface. We shall denote the force applied to the unit area of the side surface as 

q, . The elementary work of these forces on the entire side surface is then expressed by 
the integral hl hs 

6Az= dz 
s + 

q,.buds = dz 
c d 

(q,&u + q&v + qnt6w) ds (1.13) 
hs (L) h* (L) 

Introducing the static and hyperstatic notation of (1.1) into calculation of displace- 
ment variations, we have instead of (1.13) the following expression : 
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Here @I,..., M$‘) are the static and R, ,..., F) I@) are the hyperstatic characteristics 

of the side load distribution through the plate thickness, expressed by formulas 
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The expressions for Rrl andMin) are analogous. 
The principle of minimum potential energy 6lI - 6A, - 6.4, = 0, after (1.7), (1.12) 

and (1.14) are allowed for, can be written as: 
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The coefficients of the variations 6$),..., 6@) in the double integral (1.16) become 

zeros because of the equilibrium equations in terms of the stresses. We shall show it in 

the case of bracket expression next to variation 6~:); using (1.14) from [3] we have 

On the other hand, as hl and h, are functions of variables z and y, 
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Substituting these relations into the considered bracket expression (1.17) we have 

&@) + &S(*t + rsc”-1’ + (-IF (1.19) 

since the left-hand part of the differential equation of stress eq~librium (volume forces 

are assumed nil) is under the integral sign, and the square brackets next to hr’* and Zen 
become zeros because of the conditions on plate faces (cf @I). Thus. the principle of 
minimum potential energy,expressed by integrals (1.16). leads to the following relation: 

+ (n,NF) + n,$? - Q(“)) &$‘+ + (n,Gpf + n@(*) - “lj”‘) &I@’ + 

+ (nJ!@ + nvGr’ + i@)) I%@):+ (n-J:) + nyI’p) - TV@)) 6q+)] ds z 0 (1.20) 

which yields both the geometric conditions 
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b&= 0, 6x,, P) =TT 0, Sp) L1; 0, &@‘z.zz 0, ?jj$:” =_ (1, &pw = 0 (1.X) 

and the force boundary conditions of the plate contour 

n,2’?)+ ,,S(71) = Rg), tzXG$@ + n&P) = Af$ rzJV~)+ r&i”‘= Q@f 

n,S@) + n$/Ty’== I?{;‘, n,H@) + n&y cz2 - Icf(l” a 7 up+ n,r;;)= w(n) 
(12 = 0,1,2,...) (1.21) 

Conditions (I,. 22) are derived from integral (1,20) by equating to zero the coefficients 

of independent variations &$I, 6x:;), Sctn’, r%@‘, 6@7, 6cptn’ (n = 0, I$,...). Condi- 
tions (1.21) and (1.22) were obtained earlier in [3] (formulas (1.17),(X. Ll),(l. 18) and 

(2.12)) for a plate of uniform thickness. We have now shown that boundary conditions 
remain in the same form for a plate of variable thickness. 

To obtain the differential equations of plate equilibrium we shall apply the equilib- 
rium conditions on the plate faces p]. i. e. the Cauchy formulas. It must be remembered 

that the directional-cosines of the normal to the plate faces z = h&z, y) are 

alhl ash1 1 
n 1X=-n,* n,7, =-T, n,,==z 

alit,, L&h? 1 
n 2x -= x I n,y = ygy , Q = -- D, (,I 23) 

Substituting (1.23) into Cauchy formulas, expressing stresses in terms of displacements, 

using symbolic notation and taking I :-- 7~r, we obtain the first set of equilibrium equa- 

tions for a plate of variable thickness 

The first and third equations only are written out in (I.. 24) ; the second equation can 
be obtained from the first when a, is substituted for 8, (and 8, for a,), 170 for u,, , u,)’ 
for ZQ,’ and ptX for pIx . The fourth, fifth and sixth equations are &taL:ed from the first 
three equations by substitution cf 7~~~ J?I: -- PZX, - PZV, - PZZ for h,, D,. pIac, ply, p,;, 

respectivelv. The operators C(hi), S(hi), A (72,) in (1.24) are as follows: 
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A (hi) = 5 
n zn+s 

(-I) h, * 
n (cont. ) 

n=O (2n+01(2n+3) (i=l,2) 

in other words, they are derived from operators C, S, h (1.2) by substituting the parameter 
hI or h, for coordinate z . 

Let us now consider the particular case of a plate symmetrical with respect to the ori- 
ginal plane, i.e. the case when hI = - hz = h and D1 = D, = D. Taking linear com- 
binations of the first and fourth equations, second and fifth, and third and sixth of (1.24), 
adding up and calculating these pairs of equations we obtain in this case the individual 

equations of the plate extension and compression problem (in variables uO, vO, 1~~‘) and 

of the plate bending problem (in variables us, vo, ID,,). We shall write out, as an example, 
the equations for the bending problem 

[( 60' 
s 2kO + m--l 
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mMiL 
- 2(m-I) fIoj adz + b (alvo’ + &Lo’) - 

mA&a, 
-2(m-1) 80’1 &h - c (uo’+ &uJo) + mhSal 60’ + g (PIX 2(m-1) -&)=O (1.26) 

mhS& mhS& 
c (d + alwo) - 2 tm _ i) e,tj ad1 + [c (d + a2zo) - z tm _ 1l 60’ ah- I 

(m - 2) 60’ 
I 

mhC D 
2(m_i1) + 2 (m _ 1) 4w + qy (P1z + P,z) = 0 

Only the first and third equations are written out in (1.26) for the bending of a thick 
plate of variable thickness; the second equation can be obtained from the first by suit- 

ably changing the letters and indices. 

When the plate thickness is uniform, a,h = a,h = 0, D = 1 and equations (1.26) are 
simplified, they are given in [Z-4]. Another particular case is considered in the Sect. 
which follows. 

2. Plate with plane lower brat. Let the lower surface of the plate lie in 
the plane z = 0, while h, = 0, h, = h, Dz = 1 and D, = D. The fourth, fifth and sixth 
equations of plate equilibrium (equations as in (1.24)) can be now written as follows : 

pox POY 
uo'+al~o + - =o, 

P 
vo~+azwo+- =O 

tr 
PO2 2ujo'f f"'2 +7=0 (2.1) 

By means of (2.1) we can eliminate the variables uo’, vo’, wo’ from the first three 

equations of (1.24) and derive three new equations for the displacements of the original 
plane 

im(2c - hsa12)alUo +(2c - mhsa,2)azvo- ~74s + hew + 2sa,*j ~,la~h+ Mm-i) c - 

- dsa,q azUo + (trn - i)c - mhsa.23 alvo - {(m - 2)s + mhfi} a,a,w,I a,h + 

+ [(s + nhc)a,(aluo+ a,v,) - (m -l)SAuo - mMAaImol + %K, / p = 0 

[(S + mhc)a,(a,u, + azvo) - (m - i)sa u. - mhsAalwo]alh + [(s + mhc)a, (aruo + 

+ azvo) - trn - 1) SAG, - mhsAa,~ol a,h - 

- m[hSA(aru, + &vo] - AA%D,] + lItK& = 0 (2.2) 

Only the first and third equations are written out in (2.2); the second equation is 
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obtained from the first by a suitable change of letters and indices. The components li, 
and Xz which depend on the external loading are determined by the following expres- 

sions: K, =: [(mAa,2 - 2j2m - IfS~&p,, + (mA&2 - 2S)$&1u + (mfiSi?r2 - 

-2(m- 2)C] pozjalh + [4rn At+,z - 2(m - 1) S$ l&pox + fm AQ+ - 2(m - 1)s) 

dgou + mhS’al&pOt]bzh f [{Z(m - 1)C - mhS~,a#pOx - mhS~&pOv + (mAA - 

---2SFQazl + 2fm - *)&I~ 

K, = &?(m - 1)C - mhSdl~)pw - rn~S~~~~1~ + fmAA - 

- 2S)&poz]dlh + I-- rnhS~~~~~ + {Z(m---i)C - 

- mhS&t?p,t, -I- (mAA - 2s) QJO&%~ - [{(m - 2)S -I- mhC)(%pO~ -I-%~o,,)- 
- (2(m-1) C f mhSA)p,] - 2(m - f)Lip,, (2.3) 

3, Problem of equilibrium af rn axially tymmatricrl circular 
plats of variable thickness, Xf ourthick plate is circular inthe plan projection, 
it is more convenient to use cylindrical coordinates T, cp, z, The co~es~nding dispface- 

ments will be written as ur, vu, and w. When the deformation is axially symmetrical, 
D? = 0 and the solution must be independent of the polar angle ‘p. 

Let us consider as an example the case of a plate with a plane circular base the dis- 

placement of which will be written as urb and u, . These funct~~ns will be assumed to 

be dependent only on the radius r; then 

110 = Uto cos cp, ~0 = urO sin cp (3.1) 

The load components pa,., pOz, plr, ptz as well, depend only on r, so that 

J-+X =2P+. e5scp* Pip = Pi, sin v (i = 0,2) 

The relations between the derivative functions are given by 

(3.3) 

a1 = cos rp a, 
sin rp 

-~a,, 
cos ‘p 

&=sintp&-+ raq (3.3) 

Here ~9, = ?I+‘& and 8, = a/acp , It follows, therefore, from (3.3) that when hl = h = 
= hfr) 

Making use of (3,2)-(3.6) we express (2.2) in polar coordinates. Tn the case of axial 
symmetry we have 

- [(m-j- 2) S -j- mhC] A $- [(m - 

(3.7) 
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The operators S,, cE( and &are introduced here which are obtained from operators S, C 
and A by the substitution of operators Ak (3.6) for the Laplacians. The argument h is left 
out as in (9.3) and (3.3). The load components &and &which appear in (3.7) assume 

the following form after transformations (3.5)-(3.6) are applied to expressions (‘2.3) : 

K,= 
t[ 

J& A.263 - 2 (m - 1) sp] (8, 
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An exact solution is given herein for the mixed axisymmetric problem of elasticity theo- 
ry for an infinite cone. It is assumed that the shear stresses are zero on its whole boundary 

surface 8 = 8r, and the homogeneous conditions for the 

normal stresses and normal dispfacements are separated 

by the circle 6 = 6,, T = 1 (r,8, cp are spherical coor- 

dinates). 

Such problems arise, for example, in determining the 

state of stress of a cone compressed at its tip by a rigid 

cap of the same vertex angle as the cone (Fig. 1). They 
also arise in analyzing the intrusion of a conical die into 
a conical cavity made in an elastic space. The case 

I 
i 

8, = I/% n corresponds to the symmetric indentation of 
a flat circular die into an elastic half-space. 

It is assumed in formulating the problem that the 

Fig. 1 elastic stress energy at the edge of the die and the 


