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The symbolic method of Lur'e [1] and the principle of minimum potential energy are
used in our derivation of the differential equilibrium equations of a plate of variable
thickness and of boundary conditions. Rectangular plates and axially symmetrical circu-
lar plates are considered, The equilibrium equations and boundary conditions were derived
(in Cartesian coordinates) in [2, 3] for a plate of uniform thickness,

1, Derfvation of the equilibrium equations of the plate in Car-
tesian coordinates, Let u,, v, w,be the displacements of the points of an ori-
ginal plane z = 0, and «,’, vy, w," be the values of the derivatives of displacements
along coordinate z in this plane ; we have then [1]
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The variation of the specific potential energy of the plate deformation is
8% = 5ybey + 5y08y + 508, + TaydTxy + Tyd7yz + TeadYax (L.3)

Let us express the variations of deformations in terms of variations of the basic varia-
bles ug, v, Woh Uy’ vy, w,’, making use of the relations between displacements and
deformations and of equations (1.1), We have, for instance,
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Expressions for other variations of deformations will not be given here ; they can be
found in [3] (formulas (1. 2) and (2.1)).

To obtain the potential energy of the plate deformation, the specific potential energy
must be integrated over the plate volume, i, e. over its thickness and the area of its base
in plan projection, Let us first integrate over the thickness; let the top and bottomn sur-
faces of the plate be given by equations z = hy(z, y) and z = hy(x, y). We obtain the fol-
lowing expressions:
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We have introduced here static (T, 6®,...)and hyperstatic (T, T® ..., 6P, ¢®,...)
stress characteristics, conforming to the formulas (1. 3), (1. 4),(2.2) and (2, 3) in [3];
the values ™, ¥, g™, M ¥, @™ are also introduced (see formulas (1. 6)and
{2.5) of [3]). Let us note that

xg)) = ug, xs?) =y, E(O) == W, 'LIJ;D) = uy, q)g)) =3y, (p(o) == Wy’ (1.6)

Let us add up all the integrals of type (1. 5) and then integrate the obtained expression
over the area of the plate base in plan projection Q. Some of the double integrals over
the area Q will then change into integrals along contour L embracing area Q; in this
manner

(o7
8= > {&) [T + nyS™) 83 + (1, 8™ 4 1y T 85§V + (n NI+ ny NGY) 850 -
n=0 (L}
+ (ng G 4 1y HO) 80 4 (n HOY 0, G4) S0V + (ng T -y T§Y) 8909 ds —
- QS [T 0:8™ o T 830" 4 (318 - 075Y + THY) Sy -+
(£)
+ (31N3(Cn) -+ 0-3N$Jn) - Z;n~1)) §g(n) + (6105:1) +- @_:H(n) MNFVn)) 6\17&") +
+ (@ H 4 3:6™ — NE) ™) 4 (0T 4 8T — Z™,) 5™ dxdy} a.m
(Fgc_l) =S r(yl) == Z}—l) = 0)
Let us calculate the elementary work §4, of external forces applied to the faces of
Iy 1 PP
the plate, We shall denote the vectors of external forces applied to unit areas of the top
and bottom surfaces of the plate as P, and P,, We have
P 1 2
84y = SQ pr-dwad@ - \Q P2+ SuadQ: (1.8)

Here @, and Q, are the surface areas of the top and bottom bases of the plate, and u,,
u, are the displacement vectors of the points on these surfaces. Further,

dQ = 4=y aQ, = =dy (L.9)
¢os {z, n1) jcos (z, m2) |

where (z, ;) is the angle between the z-axis and the external normal to the surface
z = hy{z,y) (i = 1,2}, 8ince
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and allowing for relations (1, 9),(1.10) we can rewrite integrals (1. 8) as follows:
84y = RS [{pBus + py, b1+ pdw)y D1 (2, ¥) +
@ + (PgBtia + Py 802+ Py 0w2) D ()] dzdy  (1.11)
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Making use of formulas (1. 1), we express now the displacement variations of the points
on the plate faces in terms of variations of basic variables uq,v,,..., wo and their deriva-
tives, Making use also of the formulas which determine the values of xgc") yeees (pfc”), we
can transform the elementary work done by the face forces (1.11) as follows:
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Let us now calculate the elementary work of external forces applied to the cylindrical
side surface, We shall denote the force applied to the unit area of the side surface as
q. . The elementary work of these forces on the entire side surface is then expressed by
the integral m
5Ay = S dz @ n-Buds = Q dz @ (@Ot - Gnyd + gnsb0) ds (1.13)
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Introducing the static and hyperstatic notation of (1,1) into calculation of displace-

ment variations we have instead of (1,13) the following expression:
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Here RY,..., MY are the static and R{,..., W™ are the hyperstatic characteristics
of the side load distribution through the piate thickness, expressed by formulas
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The expressions for " and Mf/”) are analogous,
The principle of minimum potential energy 8I1 — 84, — 84, = 0, after (1. 7), (1.12)
and (1, 14) are allowed for, can be written as:
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The coefficients of the variations §3{V,..., 8¢ in the double integral (1.16) become

zeros because of the equilibrium equations in terms of the stresses, We shall show it in
the case of bracket expression next to variation 8y™; using (1.14) from [3] we have
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hy hy
é as on OR1 W e
iz §onamas) = § G2 et a7 = 0o 7
hy ha
2 hy ha o o o
2 'm o on @ng
a-? ( S'Vx'y zz‘"dz> S ;u 4 'ndg + (Txu)z—h‘ y (Txu)z=h2h2 _a_y_
hs ha
By n
S d:;x iz = {’t’zx)z:h‘}l]z.n . (sz)z=h2h§n — 9 S 'tzx"gﬂ 172 (1.i8)
R Q

Substituting these relations into the considered bracket expression (1,17) we have
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since the left-hand part of the differential equation of stress equilibrium (volume forces
are assumed nil) is under the integral sign, and the square brackets next to %" and | Al
become zeros because of the conditions on plate faces (cf [11). Thus, the principle of

minimum potential energy,expressed by integrals (1.16), leads to the following relation:
oo
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which yields both the geomerwric conditions
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oy =10, 8V=0, 8™ =0, sYM=0, YW =0, s¢™=0  (1.21)
and the force boundary conditions of the plate contour
ne T8 0y S = R 6 - n,H™ = M M N+ nyNL"): Qm
neS™ 4y 1= R, ngH™ 4 G0 = — M, n I, T =
(n=01,2,.) (1.22)

Conditions (1,22} are derived from integral (1, 20} by equating to zero the coefficients
of independent variations &x\", 8y, 68, &\, &Y™, 6¢'™ (n = 0, 1,2,...). Condi-
tions (1. 21) and (1. 22) were obtained earlier in [3] (formulas (1.17),(2,21),{1.18) and
{2.12)) for a plate of uniform thickness, We have now shown that boundary conditions
remain in the same form for a plate of variable thickness,

To obtain the differential equations of plate equilibrium we shall apply the equilib-
rium conditions onthe plate faces [1},1.e. the Cauchy formulas, It must be remembered
that the directional cosines of the normal to the plate faces z = h;{x, y)are
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Substituting (1. 23) into Cauchy formulas, expressing stresses in terms of displacements,
using symbolic notation and taking z-= h;, we obtain the first set of equilibrium equa-
tions for a plate of variable thickness
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The first and third equations only are written out in (1, 24); the second equation can
be obtained from the first when @, is substituted for 4, (and @, for 8,), va for u,, vy
for uy and peyx for pyx . The fourth, fifth and sixth equations are obtaived from the first
three equations by substitution of 79, Dy — Paxs = Pays = Puz for ke, Dy, pray Pays Pizo
respectively, The operators C(hy), S(hy), A(h;) in (1,24) are as follows:
1 "1{’"3 < (= DA

("
C ) = Z - T; S () = 2 W {1.25)

1= Nn=0
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in other words, they are derived from operators ¢, s, A (1. 2) by substituting the parameter
hy or hy for coordinate z,

Let us now consider the particular case of a plate symmetrical with respect to the ori-
ginal plane, i, e, the case when hy = — hy = h and D, = D, = D, Taking linear com-
binations of the first and fourth equations, second and fifth, and third and sixth of (1.24),
adding up and calculating these pairs of equations we obtain in this case the individual
equations of the plate extension and compression problem (in variables u,, vy, wy’) and
of the plate bending problem (in variables ug, v,, wy). We shall write out, as an example,
the equations for the bending problem

i 0y %
[S (261110' + 2 ) —5 I':VIL\ L 0 ﬁ‘o'] 01h + [S (010" + dauo’) —

mAd19; mhSo
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Only the first and third equations are written out in (1,26) for the bending of a thick
plate of variable thickness; the second equation can be obtained from the first by suit-
ably changing the letters and indices,

When the plate thickness is uniform, 8,» = 8,h = 0, D = 1 and equations (1.26) are
simplified, they are given in [2—4], Another particular case is considered in the Sect,
which follows,

2, Plate with plane lower base, Let the lower surface of the plate lie in
the plane z = 0,while h, =0, h; = h, D, = 1 and D, = D. The fourth, fifth and sixth
equations of plate equilibrium (equations as in (1.24)) can be now written as follows:

P
uy -+ drwo + —%" =0, v’ + Bawo +- =0
200 Py
. — 21
2wy’ + ——5— + m =0 (2.4)

By means of (2.1) we can eliminate the variables u,’, vy’, w,” from the first three
equations of (1.24) and derive three new equations for the displacements of the original
plane
[m(2€ — kS8,2)81ug+(2C — mh88,2)dv5— {m(S - hC)0,® -+ 250,%} wold 1k -+ [f(m—1) C —

— mh88,2} Bguy -+ {(m — 1)C — mhSO.2 0wy — {(m — 2)§ + mhC3 9,0,w,} 9,k -+
L [(S + mhC),(Byugt Byvy) — (m —1)SAuy — mhSAd w,] + YKyl p =20
(S L mhC)By(dyuq + Byvg) — (m — 1)SAuy — mhSAd weldyk -+ [(S 4 mhC)dy (Byuo+
-+ Byve) — (m — 1) SAvy — mhSAdyw,] I,k —
— m[RSA(O uy + Ogvy] — AA2wg] + YK /=0 (2.2)

Only the first and third equations are written out in (2. 2); the second equation is
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obtained from the first by a suitable change of letters and indices, The components X
and K; which depend on the external loading are determined by the following expres-

VO K, = [mAd? — 22m — 1)S} 0Py + (MADLE — 28)3poy + {mhSdt —

— 2 (m — 2)C} por101h + [fm AB 2 — 2(m — 1) 8} Byp¢n -+ fm AGE — 2(m — 1)8}
APoy + MmhS8,3:p 105k 4 [{2(m — 1}C — mASEHpoe — mhS8Fypoy -+ (MAA —
—28Y01pg] + 2(m — 1)Dpyx

= [{2(m — 1)C — mhS8% poy — MASHByp oy -+ (MAA —
— 28)0,p 10,k + [— mhiS8,03pox + {2(m—1)C —
— mhS3,2}poy + (MAA — 28) 03002105k — [{(m — 2)S -+ mhC}O1pox ~+BoPoy)—
—{2(m—1) € -+ mhSA}pe] — 2(m — 1)Dpy, (2.3}

3, Problem of equilibrium of an axially symmetrical circular
plate of varfable thickness, If our thick plate is circular inthe plan projection,
it is more convenient to use cylindrical coordinates r, @, z, The corresponding displace-
ments will be written as u,, v, and w. When the deformation is axially symmetrical,

v, = 0 and the solution must be independent of the polar angle @.

Let us consider as an example the case of a plate with a plane circular base the dis-
placement of which will be written as u,o and w,. These functions will be assumed to
be dependent only on the radins r; then

ug = U, €08 P, Vo= u,,sin @ (3.1)

The load components py., Pozs Piry Piz 88 well, depend only on r, so that

Fixxp’ir CQS(?’ piyzpir Siﬁq} (i:@, 2) (32}
The relations between the derivative functions are given by
sin . €08
81=cos 99, — —,q}-aw, O =sinQd;+ — # % (3.3)

Here 8, = 0/0r and 8, = 3/8¢ , It follows, therefore, from (3. 3) that when hy = b =
= h(r}

dh dh
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It is evident that
Alf(r) coskl= coskAy [#(n)], AIND sin kgl = sin koAy [f(r)] {3.5)
| ¢ 14 B "
Ay=—gm T T E (:5)

Making use of (3, 2)~(3.8) we express (2, 2) in polar coordinates. In the case of axial
symmetry we have
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K
—m [RSA (a, + —1;) g — ADwo] + —55: =0 (3.7
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The operators Sy, €y and Ajare introduced here which are obtained from operators S, C
and A by the substitution of operators A, (3. 6) for the Laplacians. The argument # is left
out as in (2.2) and (2. 3), The load components K, and K, which appear in (3, 7) assume
the following form after transformations (3. 2)—(3. 6) are applied to expressions (2, 3):

K, = {[—'g— Asba— 2 (m— 1) Sz] (a, — -—i—) Por + [ﬂ;ﬁ S (arz - _a;’..) _

dh
—2(m—2) Cg] Poz} 2+ [2(m—1) C1— mhS1M1] p, +
+ (mA1Ay — 284) 8 py, + 2 (m—1) Dp,,

dh
K, = {[2 (m — 1) C1 — mhS1A1] Por T (mA1AL— 251) 8, p,,} v Tlae

—[(m—2) § + mhC] (a, + —}_—)_pw +[2(m—1) C 4+ mhSA] py,—2(m —1) Dp;, (3.8)
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An exact solution is given herein for the mixed axisymmetric problem of elasticity theo~
ry for an infinite cone. It is assumed that the shear stresses are zero on its whole boundary
surface 0 = 6,, and the homogeneous conditions for the
normal siresses and normal displacements are separated
by the circle 8 = 8,, r = 1 (r,0, ¢ are spherical coor-
dinates),

Such problems arise, for example, in determining the
state of stress of a cone compressed at its tip by a rigid
cap of the same vertex angle as the cone (Fig.1). They
also arise in analyzing the intrusion of a conical die into
a conical cavity made in an elastic space, The case
8; = 1/, n corresponds to the symmetric indentation of
a flat circular die into an elastic half-space,

It is assumed in formulating the problem that the
Fig. 1 elastic stress energy at the edge of the die and the




